Optimal Energy-Delay Routing Protocol with Trust Levels for Wireless Ad Hoc Networks

Eyad Taqieddin
Ann K. Miller, Missouri University of Science and Technology
Jagannathan Sarangapani, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1192

There were 43 downloads as of 27 Jun 2016.

Abstract

This paper presents the Trust Level Routing (TLR) pro- tocol, an extension of the optimized energy-delay rout- ing (OEDR) protocol, focusing on the integrity, reliability and survivability of the wireless network. TLR is similar to OEDR in that they both are link state routing proto- cols that run in a proactive mode and adopt the concept of multi-point relay (MPR) nodes. However, TLR aims at incorporating trust levels into routing by frequently changing the MPR nodes as well as authenticating the source node and contents of control packets. TLR calcu- lates the link costs based on a composite metric (delay incurred, energy available at the neighbor node, energy spent during transmission and the number of packets sent on each link) for the selection ofMPR nodes. We highlight the vulnerabilities in OEDR and show ways to counter the possible attacks by using authentication and traffic par- tition as a basis for mitigating the effects of malicious activity. Network simulator NS2 results show that TLR delivers the packets with a noticeable decrease in the av- erage end-to-end delay with a small increase in the power consumed due to the additional computational overhead attributed to the security extension.