Modeling Heavy Metal Uptake by Sludge Particulates in the Presense of Dissolved Organic Matter

Jianmin Wang, Missouri University of Science and Technology
C. P. Huang
H. E. Allen

This document has been relocated to http://scholarsmine.mst.edu/civarc_enveng_facwork/18
There were 16 downloads as of 26 May 2016.

Abstract

The uptake of the seven heavy metal ions Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) by sludge particulates in single-metal systems was investigated. Results showed that under acidic and neutral pH conditions, the uptake of all heavy metals by sludge particulates increases with the increase of pH. However, in the alkaline pH region, the uptake of Cu(II), Ni(II), and Co(II) decreases with the increase of pH, primarily due to the high dissolved organic matter (DOM) concentration in high pH conditions. Based on chemical reactions among heavy metal, sludge solids, and DOM, a mathematical model describing metal uptake as functions of DOM and pH was developed. the stability constants of metal-sludge and metal-DOM complexes can be determined using this model in conjunction with experimental metal uptake data. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on March 1997, the stability constants of Cu(II)-sludge complex (log KS) and Cu(II)-DOM complex (log KL) are 5.3±0.2 and 4.7±0.3, respectively; for Ni(II), they are 4.0±0.2 and 3.9±0.2, respectively. Results also showed that under neutral and low pH conditions (pH<8), the DOM effects on metal uptake for all heavy metals are insignificant. Therefore, the DOM term in the model can be ignored. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on December 1996, the estimated log KS values of metal-sludge complexes for Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) are, respectively, 3.6±0.2, 3.0±0.1, 5.5±0.1, 4.8±0.1, 3.1±0.1, 5.1±0.1, and 4.4±0.3.