Doctoral Dissertations


Ming-shian Wu


"In the first paper, the mechanisms of particle capture and coalescence of aerosols by a moving water drop in the atmosphere are studied using the boundary-layer flow approximation. The particle trajectory is computed by solving the equations of motion of the particle both outside and inside the boundary layer using the Adams-Moulton method. The grazing trajectory is found by a trial-and-error technique. The collision and collection efficiencies of scavenging due to particle inertia and to the velocity gradient of the flow field are then computed for water drops ranging from 0.1 to 1.0 mm in radius and for particle of 1 - 10 µ in radius. The results obtained in this work are in good agreement with experimental data given by Walton and Woolcock.

In the second paper, the effects of intermolecular forces on the collection efficiency of submicron aerosol particles are studied. It is assumed that the intermolecular forces provide a certain region as an absorbent surface in the vicinity of the drop. Numerical results have been obtained for the cases of a water drop collecting AgCl aerosols and a water drop collecting submicron cloud droplets. It is found that the collection efficiency depends mainly on the diffusion process. Our calculations agree reasonably well with recent experimental results of Kerker for AgCl aerosols for the case of small drop"--Abstract, page iii.


Zung, Joseph T.

Committee Member(s)

Beistel, Donald W.
Carstens, John C., 1937-
Robertson, B. Ken
Podzimek, Josef, 1923-2007
Roach, D. Vincent



Degree Name

Ph. D. in Chemistry


University of Missouri--Rolla. Graduate Center for Cloud Physics Research


University of Missouri--Rolla

Publication Date


Journal article titles appearing in thesis/dissertation

  • The aerodynamic capture of aerosol particles by water drops in air
  • The role of molecular forces in the scavenging of aerosol particles


vii, 62 pages

Note about bibliography

Includes bibliographical references.


© 1973 Ming-shian Wu, All rights reserved.

Document Type

Dissertation - Restricted Access

File Type




Library of Congress Subject Headings

Atmospheric nucleation
Cloud physics -- Research

Thesis Number

T 2776

Print OCLC #


Electronic OCLC #


Link to Catalog Record

Electronic access to the full-text of this document is restricted to Missouri S&T users. Otherwise, request this publication directly from Missouri S&T Library or contact your local library.

Share My Dissertation If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.