Abstract

The production of ordinary Portland cement (OPC), the most broadly utilized man-made material, has been scrutinized due to its contributions to global anthropogenic CO2 emissions. Thus -- to mitigate CO2 emissions -- mineral additives have been promulgated as partial replacements for OPC. However, additives -- depending on their physiochemical characteristics -- can exert varying effects on OPC's hydration kinetics. Therefore -- in regards to more complex systems -- it is infeasible for semi-empirical kinetic models to reveal the underlying nonlinear composition-property (i.e., reactivity) relationships. In the past decade or so, machine learning (ML) has arisen as a promising, holistic approach to predict the properties of heterogeneous materials, even without an across-the-board comprehension of the underlying composition-properties correlations. This paper describes the use of a Random Forests (RF) model to enable high-fidelity predictions of time-dependent hydration kinetics of OPC-based systems -- more specifically [OPC + mineral additive(s)] systems -- using the system's physiochemical attributes as inputs. Results show that the RF model can also be used to formulate mixture designs that satisfy user-imposed kinetics-related criteria. Lastly, the presented results can be expanded to formulate mixture designs that satisfy target kinetic criteria, even without knowledge of the underlying kinetic mechanisms.

Department(s)

Civil, Architectural and Environmental Engineering

Second Department

Electrical and Computer Engineering

Third Department

Materials Science and Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Second Research Center/Lab

Intelligent Systems Center

Comments

The authors acknowledge financial support for this research provided by the UM system; the Federal Highway Administration (Award no: 693JJ31950021); the Leonard Wood Institute (LWI:W911NF-07-2-0062) and the National Science Foundation (NSFCMMI:1661609 and 1932690; and NSF-DMR: 2034856).

Keywords and Phrases

Hydration; Machine Learning; Mineral Additives; Portland Cement; Random Forests

International Standard Serial Number (ISSN)

0261-3069; 0264-1275

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2021 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publication Date

01 Oct 2021

Share

 
COinS