Title

Electrodeposited Defect Chemistry Superlattices

Abstract

Nanometer-scale layered structures based on thallium(III) oxide were electrodeposited in a beaker at room temperature by pulsing the applied potential during deposition. The conducting metal oxide samples were superlattices, with layers as thin as 6.7 nanometers. The defect chemistry was a function of the applied overpotential: High overpotentials favored oxygen vacancies, whereas low overpotentials favored cation interstitials. The transition from one defect chemistry to another in this nonequilibrium process occurred in the same potential range (100 to 120 millivolts) in which the rate of the back electron transfer reaction became significant. The epitaxial structures have the high carrier density and low electronic dimensionality of high transition temperature superconductors. Nanometer-scale layered structures based on thallium(III) oxide were electrodeposited in a beaker at room temperature by pulsing the applied potential during deposition. The conducting metal oxide samples were superlattices, with layers as thin as 6.7 nanometers. The defect chemistry was a function of the applied overpotential: High overpotentials favored oxygen vacancies, whereas low overpotentials favored cation interstitials. The transition from one defect chemistry to another in this nonequilibrium process occurred in the same potential range (100 to 120 millivolts) in which the rate of the back electron transfer reaction became significant. The epitaxial structures have been high carrier density and low electronic dimensionality of high transition temperature superconductors.

Department(s)

Chemistry

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1994 American Association for the Advancement of Science (AAAS), All rights reserved.


Share

 
COinS