Title

Kinetic and Dynamic Studies of the Cl(2Pu) + H 2O(X1A1) → HCl(X1Σ+) + OH(X2Π) Reaction on an Ab Initio Based Full-dimensional Global Potential Energy Surface of the Ground Electronic State of ClH2O

Abstract

Extensive high-level ab initio calculations were performed on the ground electronic state of ClH2O. the barrier region for the title reaction was found to have significant multi-reference character, thus favoring the multi-reference configuration interaction (MRCI) method over single-reference methods such as coupled-cluster. a full-dimensional global potential energy surface was developed by fitting about 25 000 MRCI points using the permutation invariant polynomial method. the reaction path features a "late" barrier flanked by deep pre- and post-barrier wells. Calculated rate constants for the forward reaction are in reasonable agreement with experiment, suggesting a good representation of the forward barrier. the dynamics of the forward reaction was also investigated using a quasi-classical trajectory method at energies just above the barrier. While the OH bond is found to be a spectator, the HCl product has significant rotational excitation. the reaction proceeds via both direct rebound and stripping mechanisms, leading to backward and sideways scattering. © 2013 AIP Publishing LLC.

Department(s)

Chemistry

International Standard Serial Number (ISSN)

219606

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2013, American Institute of Physics (AIP), All rights reserved.


Share

 
COinS