Spectrum Shifting as a Mechanism to Improve Performance of VHTRs with Advanced Actinide Fuels


Reprocessing of spent LWR fuel is an intrinsic part of the closed fuel cycle. While current technologies treat recovered minor actinides as high level wastes, the primary objective of one of the U.S. DOE Nuclear Energy Research Initiative (NERI) projects is to assess the possibility, advantages and limitations of designing a single-batch (no-refueling) very high temperature reactor (VHTR) configuration that utilizes transuranic nuclides (TRU) as a fuel component. Since both VHTR core design concepts, pebble bed and prismatic block assembly, permit flexibility in component configuration, fuel utilization and management, it is possible to improve fissile properties by neutron spectrum shifting through configuration adjustments. The presented analysis is focused on the TRU-impact on the single-batch mode (no-refueling) VHTR core lifetime. As a result of the analysis, promising performance characteristics have been demonstrated. The TRU-core configurations are expected to be suitable for long-term autonomous operation without intermediate refueling. © 2008 Elsevier B.V. All rights reserved.

Meeting Name

Fourteenth International Conference on Nuclear Engineering 2006, ICONE 14


Nuclear Engineering and Radiation Science

Keywords and Phrases

Closed Fuel Cycle; Minor Actinides; Recycle; VHTR

International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2006 Elsevier, All rights reserved.

Publication Date

01 Jan 2006