Abstract

Wastes produced from the phosphate industry presents many challenges due to the high economic and environmental impacts involved with their disposal. However, the relative scarcity of high-grade phosphate ores has driven researchers to recover and recycle these valuable wastes (secondary sources). The goal of this study was to investigate the possibility of upgrading the P2O5 content in tailings produced from a phosphorous production plant using direct froth flotation. Characterization assays, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and mineral liberation analysis (MLA), were first conducted to identify the mineralogical and morphological characteristics of tailings samples and grain properties to better understand the behavior of the flotation feed. Flotation experiments were conducted using Denver D-12 in a 1-L flotation cell in the presence of sodium silicate (dispersant) and sodium oleate (collector). Several parameters, such as the solids content of the flotation pulp, pulp pH and flotation time, were investigated to optimize the recovery and grade of the concentrate products. Results obtained from this study indicated that the P2O5 content in plant tailings could be upgraded from 21.57% to 28.4% at > 73% recovery.

Department(s)

Mining and Nuclear Engineering

Keywords and Phrases

Froth flotation; Mineral liberation analysis; Phosphate minerals; Sodium silicate

International Standard Serial Number (ISSN)

2075-163X

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2017 The Author(s), All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

 
COinS