Abstract

The MINER Act of 2006 was enacted by MSHA following the major mining accidents and required every underground coal mine to install refuge areas to help prevent future fatalities of trapped miners in the event of a disaster where the miners cannot escape. A polycarbonate safe haven wall for use in underground coal mines as component of a complete system was designed and modeled using finite element modeling in ANSYS Explicit Dynamics to withstand the MSHA required 15 psi (103.4 kPa) blast loading spanning 200 milliseconds. The successful design was constructed at a uniform height in both half-width scale and quarter-width scale in the University of Kentucky Explosives Research Team's (UKERT) explosives driven shock tube for verification of the models. The constructed polycarbonate walls were tested multiple times to determine the walls resistance to pressures generated by an explosion. The results for each test were analyzed and averaged to create one pressure versus time waveform which was then imported into ANSYS Explicit Dynamics and modeled to compare results to that which was measured during testing for model validation. This paper summarizes the results.

Department(s)

Mining and Nuclear Engineering

Comments

This research was funded by the Kentucky Department for Energy Development and Independence.

Keywords and Phrases

Coal mining; Explosion resistance; Mine safety; Mining research

International Standard Serial Number (ISSN)

0860-7001

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 Walter de Gruyter GmbH, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Share

 
COinS