A new application of the effect of transverse-shock-wave demagnetization of Nd2Fe14B high-energy hard ferromagnets for powering an explosive-driven helical flux compression generator (FCG) is proposed. The novel FCG seeding system based on a compact transverse shock-wave ferromagnetic generator (FMG) containing a 200-cm3 Nd2Fe14B energy-carrying element and a 12 g high explosive charge was designed, constructed, and tested. The proposed design is based on the idea that the wide coaxial single-turn pulse-generating coil of the FMG can simultaneously serve as a seed coil for the FCG. The coaxial single-turn pulse-generating coil of the FMG was wound on the initial part of the FCG helix; therefore, only transformer coupling existed between the pulse-generating system of the FMG and the helix of the FCG. This seeding system provides up to 180 A current amplitude and 55 mus current pulse duration to a helical FCG.


Mining Engineering

Keywords and Phrases

Ferromagnetic Materials; Pulse Generators; Shock Waves; Transformers

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type





© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Nov 2006