Abstract

Electric solid propellants are advanced solid chemical rocket propellants controlled by electric current. Electric solid propellants may also be used in an electric propulsion system, specifically, an ablative pulsed plasma thruster. Previous experiments with the electric solid propellant HIPEP suggest its ablation processes are similar to traditional propellant polytetrafluoroethylene (C2F4). Better understanding of the ablation and resulting propulsion performance of HIPEP requires a model of its vapor composition and transport properties. This paper reports on the development of such a model. The model was validated by comparing results for C2F4 with literature, which showed agreement with multiple models described. Transport property results matched within an order of magnitude for temperatures less than 15,000 K and equilibrium composition densities matched to within an order of magnitude. The electric solid propellant vapor composition was predicted in the temperature range of 500-40,000 Kelvin at 1 bar pressure. Low temperatures (25,000 K) the vapor is strongly ionized and dominated by C2+, O2+, N2+, and H+ ions. The viscosity of the electric solid propellant vapor is on the order of 10-4 kg/m/s and thermal conductivity is on the order of 10 W/m/K.

Department(s)

Mechanical and Aerospace Engineering

Publication Status

Full Access

Comments

National Aeronautics and Space Administration, Grant NNX15AP31H

International Standard Book Number (ISBN)

978-162410578-4

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Institute of Aeronautics and Astronautics, All rights reserved.

Publication Date

01 Jan 2019

Share

 
COinS