Analysis of Turbulence Model Uncertainty for Shock-Wave/Boundary-Layer Interaction Simulations


The purpose of this paper is to present results of an uncertainty and sensitivity analysis study of commonly used turbulence models in Reynolds-averaged Navier-Stokes codes due to the epistemic uncertainty in closure coefficients for shock-wave/turbulent boundary-layer interaction simulations. The study focuses on the analysis of an axisymmetric shock-wave/boundary-layer interaction (ASWBLI) turbulence model validation case including an axisymmetric cylindrical body with a trailing-edge flare of 20 deg at an upstream Mach number of 7.11. The Spalart-Allmaras, the Wilcox 2006 κ-ω, and the Menter shear-stress transport turbulence models are considered in the stochastic analyses of the ASWBLI, which used the FUN3D flow solver. The uncertainty quantification approach involves stochastic expansions based on nonintrusive polynomial chaos to efficiently propagate the uncertainty. Sensitivity analysis is performed with Sobol indices to rank the relative contribution of each closure coefficient to the total uncertainty for several output flow quantities. The results of the current study identify a set of closure coefficients that contribute most to the uncertainty in various output quantities of interest, which are also consistent with the similar shock-induced separation studies.


Mechanical and Aerospace Engineering

Research Center/Lab(s)

Center for High Performance Computing Research


National Aeronautics and Space Administration, Grant NNX14AN17A

International Standard Serial Number (ISSN)

0022-4650; 1533-6794

Document Type

Article - Journal

Document Version


File Type





© 2020 American Institute of Aeronautics and Astronautics (AIAA), All rights reserved.

Publication Date

01 Nov 2020