This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown to be incompatible with AM processing methods. As a result, many investigations have looked to methods to improve the processability of these alloys. This paper explores the use of nanostructures to enhance the processability of aluminum alloys. It is concluded that the addition of nanostructures is a promising route for modification of existing alloys and may be beneficial to other powder-based processes.


Mechanical and Aerospace Engineering

Research Center/Lab(s)

Intelligent Systems Center

Keywords and Phrases

Additive manufacturing; Aluminum; Directed energy deposition; Mechanical properties; Microstructural features; Nanoparticles; Selective laser melting

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2021 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

08 May 2021