Machining process control technologies are currently not well integrated into machine tool controllers and, thus, servomechanism dynamics are often ignored when designing and implementing process controllers. In this paper, a hierarchical controller is developed that simultaneously regulates the servomechanism positions and cutting forces in a lathing operation. The force process and servomechanism system are separated into high and low levels, respectively, in the hierarchy. The high level goal is to maintain a constant cutting force to maximize productivity while not violating a spindle power constraint. This goal is systematically propagated to the lower level and combined with the low level goal to track the reference position. Since there are only control signals at the lower level, in this case the motor voltages, a single controller is designed at the bottom level that will meet both the high level and low level goals. Simulations are conducted to validate the developed methodology.

Meeting Name

2003 American Control Conference, 2003


Mechanical and Aerospace Engineering

Keywords and Phrases

Controllers; Cutting; Cutting Forces; Force Control; Force Process; Hierarchical Controller; Hierarchical Optimal Control; Hierarchical Systems; Lathe Operation; Lathes; Linearisation Techniques; Linearization; Machine Tool Controller; Machining Process Control; Motor Voltages; Optimal Control; Position Control; Process Control; Servomechanism; Servomechanisms; Spindle Power Constraint; Turning (Machining); Turning Process

International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version

Final Version

File Type





© 2003 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2003