Ultrafast Photon-Electron Interactions in Dielectrics by a Single Laser Pulse


This study develops a quantum mechanical model to investigate energy absorption in ultrafast laser of dielectrics. The model investigates the optical property variations, electron temperature, and density changes at femtosecond scales. The ionizations and electron heating are two major factors considered for pulse absorption occurring within the pulse duration. The flux-doubling model is employed to calculate the free electron generation mainly through impact ionization and photoionization. The quantum mechanical treatments are used to account for the specific heat and the relaxation time for free electrons. The time and space dependent optical properties of the dense plasma generated by the ultrafast laser pulse are calculated. The predictions of ablation threshold and ablation depth of fused silica and barium aluminum borosilicate (BBS) are in good agreements with published experimental data. The model greatly improves the accuracy in predicting the ablation depth and can predict the crater shape.

Meeting Name

2004 ASME International Mechanical Engineering Congress and Exposition, IMECE2004 (2004: Nov. 13-19, Anaheim, CA)


Mechanical and Aerospace Engineering

Keywords and Phrases

Flux-Doubling Model; Free Electrons; Photoionization; Quantum Mechanics; Vaporization

Document Type

Article - Conference proceedings

Document Version


File Type





© 2004 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

19 Nov 2004

This document is currently not available here.