Chatter Analysis of Machining Systems with Nonlinear Force Processes


Kwon, Y. W. and Davis D. and Chung, H. H.


Regenerative chatter is a major limitation to the productivity and quality of machining operations owing to the poor surface finish, excessive tool wear, and reduced dimensional accuracy which are produced. Machining chatter analysis techniques examine the stability of the closed-loop model of the machining operation. This model is the combination of a force process model and a tool-workpiece structure model. Almost all chatter analysis techniques assume a linear force process although machining force processes inherently contain nonlinearities with respect to the cutting parameters (i.e., feed, depth-of-cut, and cutting speed). A novel machining chatter analysis approach is introduced for the stability analysis of machining systems with nonlinear force processes. The accuracy of this methodology is validated via comparisons to time domain simulations and experiments. The stability lobe diagrams (i.e., plots of the stable and unstable regions in the cutting parameter space) generated using linear and nonlinear force process models are compared and the machining force process nonlinearities are shown to significantly impact the resulting diagrams.

Meeting Name

1996 ASME International Mechanical Engineering Congress and Exposition


Mechanical and Aerospace Engineering

Keywords and Phrases

Control Nonlinearities; Machining; Mathematical Models; Mechanics; Systems Analysis; Time Domain Analysis

Document Type

Article - Conference proceedings

Document Version


File Type





© 1996 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 1996

This document is currently not available here.