Modeling of the Effects of Surface-Active Elements on Flow Patterns and Weld Penetration

Abstract

A mathematical model was developed to calculate the transient temperature and velocity distributions in a stationary gas tungsten arc (GTA) weld pool of 304 stainless steels with different sulfur concentrations. A parametric study showed that, depending upon the sulfur concentration, one, two, or three vortexes may be found in the weld pool. These vortexes are caused by the interaction between the electromagnetic force and surface tension, which is a function of temperature and sulfur concentration, and have a significant effect on weld penetration. For given welding conditions, a minimum threshold sulfur concentration is required to create a single, clockwise vortex for deep penetration. When two metals with different sulfur concentrations are welded together, the weld-pool shape is skewed toward the metal with a lower sulfur content. Detailed physical insights on complicated fluid-flow phenomena and the resulting weld-pool penetration were obtained, based on the surface tension-temperature-sulfur concentration relationships.

Department(s)

Mechanical and Aerospace Engineering

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2001 Springer Verlag, All rights reserved.

Publication Date

01 Jan 2001

Share

 
COinS