Toward Automatic Process Planning of a Multi-Axis Hybrid Laser Aided Manufacturing System: Skeleton-Based Offset Edge Generation


Even though the machining process has been integrated to the Multi-Axis Laser Aided Manufacturing Process (LAMP) System in order to get good surface finish functional parts [1], the quality of parts produced by the LAMP system is still very much dependent upon the choice of deposition paths. [2] Raster motion paths are replaced by offset spiral-like paths, which are discussed in this paper. Most commercial CAD/CAM packages are feature-based, and their use requires the effort and expertise of the user. The shape has to be decomposed into manufacturing features before the software packages can generate the paths. [3] Path planning has long been studied as discussed in this paper. There are still some problems associated with the previous algorithms and also assumptions are usually made. [6, 7, 27] An algorithm for directly generating offset edges, which can be developed to be the deposition paths, is presented in this paper. The skeleton of a layer or a slice of a 3-D CAD drawing is first generated. Based on that skeleton, the offset edges are incrementally constructed. This paper focuses on the characteristics of skeleton and offset edges as well as the construction algorithm for those edges. Simulations are used to verify this method.

Meeting Name

ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference


Mechanical and Aerospace Engineering

Keywords and Phrases

Lasers; Production Planning; Manufacturing Systems

Document Type

Article - Conference proceedings

Document Version


File Type





© 2003 American Society of Mechanical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 2003