Simulation and Measurement of 3D Shear-Driven Thin Liquid Film Flow in a Duct


Three-dimensional flow behavior of thin liquid film that is shear-driven by turbulent air flow in a duct is measured and simulated. Its film thickness and width are reported as a function of air velocity, liquid flow rate, surface tension coefficient, and wall contact angle. The numerical component of this study is aimed at exploring and assessing the suitability of utilizing the FLUENT-CFD code and its existing components, i.e. Volume of Fluid model (VOF) along with selected turbulence model, for simulating the behavior of 3D shear-driven liquid film flow, through a comparison with measured results. The thickness and width of the shear-driven liquid film are measured using an interferometric technique that makes use of the phase shift between the reflections of incident light from the top and bottom surfaces of the thin liquid film. Such measurements are quite challenging due to the dynamic interfacial instabilities that develop in this flow. The results reveal that higher air flow velocity decreases the liquid film thickness but increases its width, while higher liquid flow rate increases both its thickness and width. Simulated results provide good estimates of the measured values, and reveal the need for considering a dynamic rather than a static wall contact angle in the model for improving the comparison with measured values.


Mechanical and Aerospace Engineering


National Science Foundation (U.S.)
United States. Department of Energy

Keywords and Phrases

Measurements; Shear-Driven Film; Thin Film; VOF Model

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version


File Type





© 2008 Elsevier Masson, All rights reserved.

Publication Date

01 Apr 2008