Stress-biased Cymbals Using Shape Memory Alloys


Cymbals and other flextensional transducers demonstrate high effective displacements due to the amplifying nature of the metal endcaps, while stress-biased RAINBOW actuators display high displacements due to enhanced 90° domain wall translational processes that result from the tensile stress in the surface region of the lead zirconate titanate (PZT) layer created during manufacturing. a new class of transducers, called stress-biased cymbals (SBC), was developed that couples the operational principles of cymbal and stress-biased actuators. Pre-stressing the PZT in the cymbal was accomplished using a flat-trained shape memory alloy endcap. Hysteresis loops were measured using a Sawyer-Tower circuit for different pre-stress levels. Enhancements in the differential dielectric constant of more than 70% and the effective d33 of the cymbal by ∼57% were observed, suggesting greater 90° domain wall motion in the SBC compared with the standard cymbal device. the stresses developed during the fabrication process were measured and compared with theoretical models. Additional performance characteristics including dynamic dielectric constant, loss, and radial resonance frequency of the devices are also reported.


Materials Science and Engineering

Keywords and Phrases

Cymbals; Flextensional Transducers; Metal Endcaps

International Standard Serial Number (ISSN)

0002-7820; 1551-2916

Document Type

Article - Journal

Document Version


File Type





© 2007 Wiley-Blackwell, All rights reserved.

Publication Date

01 Jan 2007