Substrate-blind Photonic Integration Based On High-index Glass Materials


Conventional photonic integration technologies are inevitably substrate-dependent, as different substrate platforms stipulate vastly different device fabrication methods and processing compatibility requirements. Here we capitalize on the unique monolithic integration capacity of composition-engineered non-silicate glass materials (amorphous chalcogenides and transition metal oxides) to enable multifunctional, multi-layer photonic integration on virtually any technically important substrate platforms. We show that high-index glass film deposition and device fabrication can be performed at low temperatures (< 250 °C) without compromising their low loss characteristics, and is thus fully compatible with monolithic integration on a broad range of substrates including semiconductors, plastics, textiles, and metals. Application of the technology is highlighted through three examples: demonstration of high-performance mid-IR photonic sensors on fluoride crystals, direct fabrication of photonic structures on graphene, and 3-D photonic integration on flexible plastic substrates.


Materials Science and Engineering

Keywords and Phrases

Chalcogenide glasses; flexible photonics; graphene; integrated optical devices; metal oxides; resonators; sensors; waveguides

International Standard Book Number (ISBN)


International Standard Serial Number (ISSN)

1996-756X; 0277-786X

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type





© 2023 Society of Photo-optical Instrumentation Engineers, All rights reserved.

Publication Date

01 Jan 2014