Flowsheet Development, Process Simulation and Economic Feasibility Analysis for Novel Suspension Ironmaking Technology Based on Natural Gas: Part 2 - Flowsheet and Simulation for Ironmaking Combined with Steam Methane Reforming


A novel gas-solid suspension ironmaking process with much less energy consumption and carbon dioxide emissions than the current blast furnace technology is under development at the University of Utah. The proposed process is based on flash reduction of iron ore concentrate with a gaseous reagent, such as hydrogen, syngas and/or natural gas. This series of papers reports on the results of process simulation for the proposed process operated with natural gas. This Part 2 deals with simulation of a commercial scale ironmaking process combined with a steam methane reforming process. The steam methane reforming process was simulated to produce hydrogen or syngas to provide fuel/reductant for ironmaking. Ironmaking was simulated in onestep configuration. The results indicated that the proposed process would reduce carbon dioxide emissions by 31-35%, but energy consumption would be larger by 0-6%, based on the higher heating value of natural gas (28-29% lower, if the lower heating value is used), compared with the average blast furnace process. The sensitivity of the energy requirement to operating conditions was also examined.


Materials Science and Engineering

Keywords and Phrases

Carbon dioxide; Economic feasibility; Flash reduction; Flowsheet; Ironmaking; Natural gas; Process simulation; Reformerless; Reforming

International Standard Serial Number (ISSN)

0301-9233; 1743-2812

Document Type

Article - Journal

Document Version


File Type





© 2013 Institute of Materials, Minerals and Mining, All rights reserved.

Publication Date

01 Jan 2013