Alternative Title

Elevated Temperature Microstructure Stability of Additive Manufactured 304L Stainless Steel


With time at temperature, changes in metallurgical structure can be expected for almost any steel or alloy. In stainless steels, the changes can be grain growth, carbide precipitation, ferrite decomposition, or embrittlement. These phenomena can significantly effect the properties of the steel and would potentially change the functionality of the component. Therefore, to determine component stability, the elevated temperature microstructure stability of additive manufacturing materials was studied. This work investigates the influence of different aging times of additive material stainless steels (304L) fabricated with the Selective Laser Melting (SLM) process on microstructure and mechanical properties. Microstructure and mechanical properties were dramatically effected at temperatures much lower than expected when compared to samples of wrought stainless steel. The stainless steel fabricated using the SLM process was much more kinetically active. Results of this study will be presented along with possible reasons for the higher activity.

Meeting Name

27th Annual International Solid Freeform Fabrication Symposium (2016: Aug. 8-10, Austin, TX)


Materials Science and Engineering


This work has been funded by Honeywell Federal Manufacturing & Technologies under Contract No. DE-NA0002839 with the U.S. Department of Energy.

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type




Publication Date

10 Aug 2016