Decreased Bacteria Activity on Si3N4 Surfaces Compared with PEEK Or Titanium

Editor(s)

Webster, Thomas J.

Abstract

A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants--titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si₃N₄)--were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si₃N₄ were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si₃N₄ is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si₃N₄. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si₃N₄ were also examined. Significantly greater amounts of these proteins adhered to Si₃N₄ than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants.

Department(s)

Materials Science and Engineering

Keywords and Phrases

Anti-Infective; Biofilm; Nanostructure; Protein Adsorption; Silicon Nitride

International Standard Serial Number (ISSN)

1176-9114

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Dove Medical press, All rights reserved.

Publication Date

01 Jan 2012

Share

 
COinS