Masters Theses


Saroja Saroja


“Liquids confined in nanoscopic geometries are presently of great interest but not well understood. Recent experiments have demonstrated that such liquids possess unique properties not typically found in normal liquids. Existing molecular simulations have some success in reproducing some of the experimental results, but also show limitations facing nanoconfined liquids. This project is aimed at developing a new simulation method that is capable of investigating both static and dynamic properties of nanoconfined liquids and reaches beyond current simulation methods.

An NhPT molecular dynamics (MD) simulation method has been developed, which uses temperature and pressure constraints to specify the thermodynamic state of a confined liquid. Lennard-Jones (LJ) and w-decane liquids confined between two solid surfaces have been studied with this new method. It was found that, under confinement, spherical LJ particles and linear n-decane are induced to form layers parallel to the surfaces. As surface separation is varied, surface density changes in a step-wise fashion, giving rise to configurational transitions that cause oscillatory solvation forces. The solvation forces peak when nanoconfined liquids are well layered and slide to minima as nanoconfined liquids become disordered. The layering phenomenon also affects dynamic properties. Translational diffusivities parallel to the surfaces are found to oscillate out of phase with respect to force oscillations. Specifically, better-layered films having higher film densities exhibit lower translational diffusivities and disordered films having lower film densities allow for higher diffusivities. These results are consistent with experiments and with previous simulation studies”--Abstract, page iii.


Wang, Jee-Ching

Committee Member(s)

Sourlas, Dennis
Hale, Barbara N.


Chemical and Biochemical Engineering

Degree Name

M.S. in Chemical Engineering


There is no page 33 in the manuscript.


University of Missouri--Rolla

Publication Date

Spring 2002


ix, 49 pages

Note about bibliography

Includes bibliographical references (pages 47-48).


© 2002 Saroja Saroja, All rights reserved.

Document Type

Thesis - Restricted Access

File Type




Subject Headings

Molecular dynamics -- Simulation methods

Thesis Number

T 8037

Print OCLC #


Link to Catalog Record

Electronic access to the full-text of this document is restricted to Missouri S&T users. Otherwise, request this publication directly from Missouri S&T Library or contact your local library.

Share My Thesis If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.