Presenter Information

Hung La, University of Nevada, Reno

Description

The PI was a research scientist/faculty at Rutgers University who successfully developed in 2014 a Robotic Assisted Bridge Inspection Tool (RABIT) for bridge deck inspections. Other bridge elements, such as girders and columns, or even underside of bridge decks are difficult to access and remain a challenge for efficient inspection. Like visual inspection, current practices for bridge maintenance are equally time consuming and expensive. Automation of simple maintenance actions such as bearing cleaning and concrete sealing with robots will lead to a leap forward to the next-generation strategy of bridge maintenance.

This project aims to develop and prototype automated climbing robotic platforms for steel bridge inspection and evaluation with support of visual and 3D LiDAR for navigation in global positioning system (GPS)-denied environments, develop a nondestructive evaluation (NDE) device or sensors deployment strategy with a mechanical limb, and evaluate the condition of steel bridges based on data collected from the device or sensors.

Presentation Date

03 Aug 2020, 2:00 pm - 4:00 pm

Meeting Name

INSPIRE-UTC 2020 Annual Meeting

Department(s)

Civil, Architectural and Environmental Engineering

Comments

AS-2

Document Type

Presentation

Document Version

Final Version

File Type

text

Language(s)

English

portrait of presenter

Share

COinS
 
Aug 3rd, 2:00 PM Aug 3rd, 4:00 PM

Climbing Robots with Automated Deployment of Sensors and Nde Devices for Steel Bridge Inspection

The PI was a research scientist/faculty at Rutgers University who successfully developed in 2014 a Robotic Assisted Bridge Inspection Tool (RABIT) for bridge deck inspections. Other bridge elements, such as girders and columns, or even underside of bridge decks are difficult to access and remain a challenge for efficient inspection. Like visual inspection, current practices for bridge maintenance are equally time consuming and expensive. Automation of simple maintenance actions such as bearing cleaning and concrete sealing with robots will lead to a leap forward to the next-generation strategy of bridge maintenance.

This project aims to develop and prototype automated climbing robotic platforms for steel bridge inspection and evaluation with support of visual and 3D LiDAR for navigation in global positioning system (GPS)-denied environments, develop a nondestructive evaluation (NDE) device or sensors deployment strategy with a mechanical limb, and evaluate the condition of steel bridges based on data collected from the device or sensors.