Location

San Diego, California

Session Start Date

3-26-2001

Session End Date

3-31-2001

Abstract

The effect of the sand compaction pile method as a countermeasure for liquefaction mainly consists of three factors: increase in the density, increase in the horizontal effective stress and stabilization of microstructure. Proper evaluation of the effect of improvement is important for estimating the seismic behavior of the ground improved by the sand compaction pile method. How to incorporate the effect and its factors into an analytical model was investigated by simulating the seismic behavior of the ground at two sites during the 1995 Hyogoken-Nambu earthquake with the effective stress analysis method “FLIP.” It was found that not only the increase in the density but also increase in the horizontal effective stress were important in explaining the effect of the sand compaction pile method. Moreover, a model taking account of both sand piles and the improved ground between them suggested a possibility of reproducing the behavior of improved ground under large ground motions more properly.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Fourth Conference

Publisher

University of Missouri--Rolla

Publication Date

3-26-2001

Document Version

Final Version

Rights

© 2001 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 26th, 12:00 AM Mar 31st, 12:00 AM

Effective Stress Analysis for Evaluating the Effect of the Sand Compaction Pile Method During the 1995 Hyogoken-Nambu Earthquake

San Diego, California

The effect of the sand compaction pile method as a countermeasure for liquefaction mainly consists of three factors: increase in the density, increase in the horizontal effective stress and stabilization of microstructure. Proper evaluation of the effect of improvement is important for estimating the seismic behavior of the ground improved by the sand compaction pile method. How to incorporate the effect and its factors into an analytical model was investigated by simulating the seismic behavior of the ground at two sites during the 1995 Hyogoken-Nambu earthquake with the effective stress analysis method “FLIP.” It was found that not only the increase in the density but also increase in the horizontal effective stress were important in explaining the effect of the sand compaction pile method. Moreover, a model taking account of both sand piles and the improved ground between them suggested a possibility of reproducing the behavior of improved ground under large ground motions more properly.