Location
San Diego, California
Presentation Date
30 Mar 2001, 1:30 pm - 3:30 pm
Abstract
The effects of subsoil conditions on surface ground motion are evaluated in terms of energy spectra. Near-field and far-field strong ground motion recorded during recent destructive earthquakes at nearby rock and soil sites characterized by a comprehensive knowledge of the geotecbnical properties are considered. The study suggests that energy spectra at soil sites are amplified with respect to those on rock sites. The maximum spectral amplification is usually well correlated to the natural periods of the sites. The most striking difference between traditional response spectra and energy spectra is the high soil amplification at longer periods, which is not apparent from the consideration of response spectra only.
Department(s)
Civil, Architectural and Environmental Engineering
Meeting Name
4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics
Publisher
University of Missouri--Rolla
Document Version
Final Version
Rights
© 2001 University of Missouri--Rolla, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Document Type
Article - Conference proceedings
File Type
text
Language
English
Recommended Citation
Decanini, Luis D.; Lanzo, Giuseppe; and Mollaioli, Fabrizio, "Characterisation of Site Effects by Means of Energy Spectra" (2001). International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 15.
https://scholarsmine.mst.edu/icrageesd/04icrageesd/session03/15
Included in
Characterisation of Site Effects by Means of Energy Spectra
San Diego, California
The effects of subsoil conditions on surface ground motion are evaluated in terms of energy spectra. Near-field and far-field strong ground motion recorded during recent destructive earthquakes at nearby rock and soil sites characterized by a comprehensive knowledge of the geotecbnical properties are considered. The study suggests that energy spectra at soil sites are amplified with respect to those on rock sites. The maximum spectral amplification is usually well correlated to the natural periods of the sites. The most striking difference between traditional response spectra and energy spectra is the high soil amplification at longer periods, which is not apparent from the consideration of response spectra only.