Location

St. Louis, Missouri

Session Start Date

4-2-1995

Session End Date

4-7-1995

Abstract

A 2-.degrees-of-freedom discrete model with 8 constant lumped parameters is developed to equivalently simulate frequency-dependent dynamic impedances of the elastic halfspace. The equations of motion for the nonlinear dynamic soil-structure interaction (DSSI) analysis are established in the time domain and then nonlinear seismic responses of the coupling system are predicted by the proposed iterative procedure. Based on numerical results for three typical shear-type structures, effects of the shear stiffness of underlying soils and different ground motions on dynamic responses are examined.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Third Conference

Publisher

University of Missouri--Rolla

Publication Date

4-2-1995

Document Version

Final Version

Rights

© 1995 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Apr 2nd, 12:00 AM Apr 7th, 12:00 AM

Lumped-Parameter Model and Nonlinear DSSI Analysis

St. Louis, Missouri

A 2-.degrees-of-freedom discrete model with 8 constant lumped parameters is developed to equivalently simulate frequency-dependent dynamic impedances of the elastic halfspace. The equations of motion for the nonlinear dynamic soil-structure interaction (DSSI) analysis are established in the time domain and then nonlinear seismic responses of the coupling system are predicted by the proposed iterative procedure. Based on numerical results for three typical shear-type structures, effects of the shear stiffness of underlying soils and different ground motions on dynamic responses are examined.