Location

St. Louis, Missouri

Session Start Date

4-2-1995

Session End Date

4-7-1995

Abstract

An incremental stress-strain model for granular soils based on fundamental soil mechanics principles is presented. The model captures the drained skeleton behavior observed in laboratory tests under cyclic loading. The undrained behavior is captured using the same skeleton stress-strain relation together with the volumetric constraint imposed by the pore water fluid. The model predicts cyclic simple shear response in close agreement with observed cyclic test data in terms of pore water pressure rise, cycles to trigger liquefaction, as well as the characteristic post-liquefaction response. Finally, the model is incorporated in a dynamic analyses procedure and applied to the field case history recorded at the Wildlife site. The recorded downhole time history was used as input and the predicted response compared with the field observation. In general, the agreement is good except for the pore water pressure response, which showed a more rapid rise than was observed.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Third Conference

Publisher

University of Missouri--Rolla

Publication Date

4-2-1995

Document Version

Final Version

Rights

© 1995 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Apr 2nd, 12:00 AM Apr 7th, 12:00 AM

Effective Stress Liquefaction Analysis at the Wildlife Site

St. Louis, Missouri

An incremental stress-strain model for granular soils based on fundamental soil mechanics principles is presented. The model captures the drained skeleton behavior observed in laboratory tests under cyclic loading. The undrained behavior is captured using the same skeleton stress-strain relation together with the volumetric constraint imposed by the pore water fluid. The model predicts cyclic simple shear response in close agreement with observed cyclic test data in terms of pore water pressure rise, cycles to trigger liquefaction, as well as the characteristic post-liquefaction response. Finally, the model is incorporated in a dynamic analyses procedure and applied to the field case history recorded at the Wildlife site. The recorded downhole time history was used as input and the predicted response compared with the field observation. In general, the agreement is good except for the pore water pressure response, which showed a more rapid rise than was observed.