Location

St. Louis, Missouri

Session Start Date

3-11-1991

Session End Date

3-15-1991

Abstract

A system identification technique is developed to provide dynamic properties of earth dams from their seismic records. The technique is utilized to assess the capabilities and limitation of analytical models in terms of dynamic nonlinear constitutive relationships as well as damping. The technique is based on the least square method using Gaussian hypothesis. Earth dams are modeled as a three-dimensional nonhomogeneous visco-elasto-plastic soil structure. The forward problem is solved using a Galerkin-Ritz formulation in which the solution is expanded using basis function, which is selected to be the eigenmodes. The spatial variation of the excitation is considered by using global shape functions defined on the boundary domain to interpolate the input motion on the dam boundaries using recorded motion at discrete locations. The constitutive model is used to accommodate the nonlinear path dependent behavior of the dam material as well as coupling between different constituent of the soil mixture. The model is implemented using Druker-Prager multi-yield surface model and linear Kelvin-Voigt model. Application to instrumented dams, in recent earthquake, showed significant match between the recorded response and the optimal estimated response.

Department(s)

Civil, Architectural and Environmental Engineering

Appears In

International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics

Meeting Name

Second Conference

Publisher

University of Missouri--Rolla

Publication Date

3-11-1991

Document Version

Final Version

Rights

© 1991 University of Missouri--Rolla, All rights reserved.

Document Type

Article - Conference proceedings

File Type

text

Language

English

Share

COinS
 
Mar 11th, 12:00 AM Mar 15th, 12:00 AM

System Identification and Seismic Performance Evaluation of Earth Dams

St. Louis, Missouri

A system identification technique is developed to provide dynamic properties of earth dams from their seismic records. The technique is utilized to assess the capabilities and limitation of analytical models in terms of dynamic nonlinear constitutive relationships as well as damping. The technique is based on the least square method using Gaussian hypothesis. Earth dams are modeled as a three-dimensional nonhomogeneous visco-elasto-plastic soil structure. The forward problem is solved using a Galerkin-Ritz formulation in which the solution is expanded using basis function, which is selected to be the eigenmodes. The spatial variation of the excitation is considered by using global shape functions defined on the boundary domain to interpolate the input motion on the dam boundaries using recorded motion at discrete locations. The constitutive model is used to accommodate the nonlinear path dependent behavior of the dam material as well as coupling between different constituent of the soil mixture. The model is implemented using Druker-Prager multi-yield surface model and linear Kelvin-Voigt model. Application to instrumented dams, in recent earthquake, showed significant match between the recorded response and the optimal estimated response.