Multiphysics Simulation of Frost Heave in Unsaturated Road Systems Under Covering Effect

Abstract

The frost heave of road systems under the covering effect involves the coupled transport of water, heat, and gas, along with the dynamic phase transition of water, vapor, and ice, resulting in a complex multi-physical field coupling process. This study presents a multi-physics numerical model to investigate the frost heave process of road systems in cold regions. The model not only considers the pavement covering effect and the multi-layered structure of the road, but also represents the multi-field coupling and multiphase transitions involved in the system. The model validation is conducted by comparing it with experimental results from a well-documented sample experiment, which simplifies the initial and boundary conditions of the road system calculation profile model. Following the multi-field coupling analysis, a parametric analysis is conducted to explore the impact of different roadbed parameters on the covering effect. Special attention is given to the effects of initial moisture content, temperature gradient, cooling rate, and compactness of fillers on the frost heave process. The results show that the migration and phase transition of vapor impact the freezing process of road systems. In the stable phase of the freeze process, the moisture content at the top of the road substantially exceeds the initial level, a phenomenon driven by vapor migration. This multi-physics simulation can potentially serve as a guidance for studying the frost heave mechanism of road systems in cold regions.

Department(s)

Geosciences and Geological and Petroleum Engineering

Comments

Fundamental Research Funds for the Central Universities, Grant 300102214303

Keywords and Phrases

Covering effect; Frost heave; Multi-layered road system; Multiphase transitions; Multiphysics simulation

International Standard Serial Number (ISSN)

2214-3912

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Elsevier, All rights reserved.

Publication Date

01 Mar 2025

Share

 
COinS