Frequency-Domain Channel Estimation and Equalization for Single Carrier Underwater Acoustic Communications

Y. Rosa Zheng, Missouri University of Science and Technology
Chengshan Xiao, Missouri University of Science and Technology
T. C. Yang
Wen-Bin Yang

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1640

There were 4 downloads as of 28 Jun 2016.

Abstract

A new frequency-domain channel estimation and equalization (FDE) scheme is proposed for single carrier (SC) underwater acoustic communications. The proposed SC-FDE employs a small training signal block for initial channel estimation in the frequency domain and converts the estimated transfer function to a desired DFT (discrete Fourier transform) size for channel equalization of the data blocks. The frequency domain equalizer is designed using the linear minimum mean square error criterion. A new phase coherent detection scheme is also proposed and deployed to combat the phase drift due to the instantaneous Doppler in the underwater channels. The channel transfer functions and group-averaged phase drift are re-estimated adaptively in a decision-directed manner for each data block in a packet, which contains M blocks of QPSK data. The proposed SC-FDE method is applied to single input multiple output (SIMO) systems using the experimental data measured off the coast of Panama City, Florida, USA, June 2007. The uncoded bit error rate of the SIMO systems varies between 1.3% to 6.8 x 10^-5 when 4 ~ 8 receive hydrophones are utilized, and the source-receiver range is 5.06 km.