Fast Time-Varying Dispersive Channel Estimation and Equalization for 8-PSK Cellular System

Sang-Yick Leong
Jingxian Wu
Chengshan Xiao, Missouri University of Science and Technology
Jan C. Olivier

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1043

There were 40 downloads as of 27 Jun 2016.

Abstract

In this paper, a novel channel-estimation scheme for an 8-PSK enhanced data rates for GSM evolution (EDGE) system with fast time-varying and frequency-selective fading channels is presented. via a mathematical derivation and simulation results, the channel impulse response (CIR) of the fast fading channel is modeled as a linear function of time during a radio burst in the EDGE system. Therefore, a least-squares-based method is proposed along with the modified burst structure for time-varying channel estimation. Given that the pilot-symbol blocks are located at the front and the end of the data block, the LS-based method is able to estimate the parameters of the time-varying CIR accurately using a linear interpolation. The proposed time-varying estimation algorithm does not cause an error floor that existed in the adaptive algorithms due to a nonideal channel tracking. Besides, the time-varying CIR in the EDGE system is not in its minimum-phase form, as is required for low-complexity reduced-state equalization methods. In order to maintain a good system performance, a Cholesky-decomposition method is introduced in front of the reduced-state equalizer to transform the time-varying CIR into its minimum-phase equivalent form. via simulation results, it is shown that the proposed algorithm is very well suited for the time-varying channel estimation and equalization, and a good bit-error-rate performance is achieved even at high Doppler frequencies up to 300 Hz with a low complexity.