Intelligent Integration of a Wind Farm to an Utility Power Network with Improved Voltage Stability

V. K. Polisetty
Sandhya R. Jetti
Ganesh K. Venayagamoorthy, Missouri University of Science and Technology
Ronald G. Harley

This document has been relocated to

There were 9 downloads as of 28 Jun 2016.


The increasing effect of wind energy generation will influence the dynamic behavior of power systems by interacting with conventional generation and loads. Due to the inherent characteristics of wind turbines, non-uniform power production causes variations in system voltage and frequency. Therefore, a wind farm requires high reactive power compensation. Flexible AC transmission systems (FACTS) devices such as SVCs inject reactive power into the system which helps in maintaining a better voltage profile. This paper presents the design of a linear and a nonlinear coordinating controller between a SVC and the wind farm inverter at the point of interconnection. The performances of the coordinating controllers are evaluated on the IEEE 12 bus FACTS benchmark power system where one of the generators is replaced by a wind farm supplying 300 MW. Results are presented to show that the voltage stability of the entire power system during small and large disturbances is improved.