Considerations for Magnetic-Field Coupling Resulting in Radiated EMI

James L. Drewniak, Missouri University of Science and Technology
Richard E. DuBroff, Missouri University of Science and Technology
Todd H. Hubing, Missouri University of Science and Technology
Thomas Van Doren, Missouri University of Science and Technology
David M. Hockanson

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1512

There were 8 downloads as of 28 Jun 2016.

Abstract

Parasitic inductance in printed circuit board geometries can worsen the EMI performance and signal integrity of high-speed digital designs. Partial-inductance theory is a powerful tool for analyzing inductance issues in signal integrity. However, partial inductances may not adequately model magnetic flux coupling to EMI antennas because the EMI antennas are typically open loops. Therefore, partial inductances may not always accurately predict radiated EMI from noise sources, unless used in a full-wave analysis such as PEEC. Partial inductances can be used, however, to estimate branch inductances, which can be used to predict EMI. This paper presents a method for decomposing loop or self inductances into branch inductances. Experimental as well as analytical investigations are used to compare branch- and partial-inductances