An Electromagnetic Model for Evaluating Temporal Water Content Distribution and Movement in Cyclically Soaked Mortar

Shanup Peer
R. Zoughi, Missouri University of Science and Technology
K. E. Kurtis

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1432

There were 11 downloads as of 28 Jun 2016.

Abstract

Evaluation of water distribution and its temporal movement in cement-based materials is important for assessing cement hydration, curing, and long-term performance. From a practical standpoint, it is also important to obtain this information nondestructively. Near-field microwave nondestructive evaluation methods have proven effective for evaluation of cement-based materials for their various mixture properties, including the detection of salt added to the mixing water and chloride ions entering these materials through exposure to salt water solutions. Electromagnetic modeling of the interaction of microwave signals with moist cement-based materials can provide the necessary insight to evaluate water content distribution and movement in these materials. To this end, the temporal microwave reflection properties of a mortar cube, subjected to cycles of wetting and drying, were measured at 3 and 10 GHz using open-ended rectangular waveguides for several cycles, each lasting about 35 days. A semiempirical electromagnetic model, based on modeling the cube as a layered structure with each layer having a different dielectric constant, was then developed to simulate the measured reflection properties. The simulated and measured results were obtained for both frequencies and, for all cycles, were in good agreement. The most important outcome of the model is the temporal behavior of water content distribution and, hence, its movement in the mortar cube. This paper presents a brief description of the measurement approach and a detailed description of the model. A detailed discussion of the results and its sensitivity to various parameters is also provided.