Fully Evolvable Optimal Neurofuzzy Controller Using Adaptive Critic Designs

Salman Mohagheghi
Ganesh K. Venayagamoorthy, Missouri University of Science and Technology
Ronald G. Harley

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1643

There were 14 downloads as of 28 Jun 2016.


A near-optimal neurofuzzy external controller is designed in this paper for a static compensator (STATCOM) in a multimachine power system. The controller provides an auxiliary reference signal for the STATCOM in such a way that it improves the damping of the rotor speed deviations of its neighboring generators. A zero-order Takagi-Sugeno fuzzy rule base constitutes the core of the controller. A heuristic dynamic programming (HDP) based approach is used to further train the controller and enable it to provide nonlinear near-optimal control at different operating conditions of the power system. Based on the connectionist systems theory, the parameters of the neurofuzzy controller, including the membership functions, undergo training. Simulation results are provided that compare the performance of the neurofuzzy controller with and without updating the fuzzy set parameters. Simulation results indicate that updating the membership functions can noticeably improve the performance of the controller and reduce the size of the STATCOM, which leads to lower capital investment.