Implementation of a PSO Based Online Design of an Optimal Excitation Controller

Chuan Yan
Ganesh K. Venayagamoorthy, Missouri University of Science and Technology
Keith Corzine, Missouri University of Science and Technology

This document has been relocated to http://scholarsmine.mst.edu/ele_comeng_facwork/1672

There were 12 downloads as of 28 Jun 2016.

Abstract

The Navypsilas future electric ships will contain a number of pulsed power loads for high-energy applications such as radar, railguns, and advanced weapons. This pulse energy demand has to be provided by the ship energy sources, while not impacting the operation of the rest of the system. It is clear from studies carried out earlier that disturbances are created at the generator ac bus. This paper describes an online design and laboratory hardware implementation of an optimal excitation controller using particle swarm optimization (PSO) to minimize the effects of pulsed loads. The PSO algorithm has been implemented on a digital signal processor. Laboratory results show that the PSO designed excitation controller provides an effective control of a generatorpsilas terminal voltage during pulsed loads, restoring and stabilizing it quickly.