Abstract

Finite element models are invaluable for determining expected machine performance. However, finite element analysis can be computationally intense; particularly if a large numbers of studies or high bandwidth studies are required. One method to avoid this difficulty is to extract machine parameters from the finite element model and use the parameters in lumped parameter models. While often useful, such an approach does not represent space harmonics or asymmetries in the motor. A methodology for constructing a state-variable model, based on a magnetic equivalent circuit of the motor is described herein. In addition, the parameters for this model are based solely on geometrical data. This approach is an excellent compromise between the speed of lumped parameter models and the ability of finite element methods to capture spatial effects. Experimental validation of the model is provided.

Department(s)

Electrical and Computer Engineering

International Standard Serial Number (ISSN)

0885-8969

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jun 2007

Share

 
COinS