Abstract

The selection of decoupling capacitors (decap) is a critical but tedious process in power distribution network (PDN) design. In this paper, an improved decap-selection algorithm based on deep reinforcement learning (DRL), which seeks the minimum number of decaps through a self-exploration training to satisfy a given target impedance, is presented. Compared with the previous relevant work: the calculation speed of PDN impedance is significantly increased by adopting an impedance matrix reduction method; also, the enhanced algorithm performs a better convergence by utilizing the techniques of double Q-learning and prioritized experience replay; furthermore, a well-designed reward is proposed to facilitate long-term convergence when more decaps are required. The proposed algorithm demonstrates the feasibility of achieving decent performance using DRL with pre-trained knowledge for more complicated engineering tasks in the future.

Department(s)

Electrical and Computer Engineering

Comments

National Science Foundation, Grant 1916535

Keywords and Phrases

decoupling capacitor (decap); deep Q-learning; double Q-learning; machine learning; power distribution network; prioritized experience replay; reward; target impedance

International Standard Book Number (ISBN)

978-172817430-3

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jul 2020

Share

 
COinS