Abstract
The use of nanostructured delafossite oxides in thermoelectric (TE) applications has attracted a great interest due to their high performance and long-term stability at elevated temperatures. Cuprous delafossites, CuMO2 (M = Al, Cr, Fe, Ga, Mn), compared to conventional TE materials, such as Bi2Te3, PbTe and SiGe, are non-toxic and more earth abundant. In particular, CuAlO2 compound shows a great potential for high performance thermoelectric materials. In this work, a systematic study of temperature dependent TE properties of cuprous delafossite materials, CuAlO2, is reported. The optimization of the TE properties has been realized by controlling nanostructure size around 80 nm CuAlO2 powder was prepared using a solid-state synthesis method at ∼1373 K in nitrogen/air atmosphere. The nanostructure size was controlled by a high energy ball milling process. Reducing the particle size of nanostructured bulk materials decouples interdependent electron and phonon transport and results in a lattice thermal conductivity decrease without deteriorating electrical conductivity. The high effective mass plays a dominant role in the high Seebeck coefficient and low electrical conductivity. The power factor reached ∼0.78 x 10−5 W/mK2 at 780 K. Temperature dependent TE properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity are analyzed. The processing-structure-property correlation of these materials are discussed.
Recommended Citation
Y. Feng et al., "Temperature Dependent Thermoelectric Properties of Cuprous Delafossite Oxides," Composites Part B: Engineering, vol. 156, pp. 108 - 112, Elsevier, Jan 2019.
The definitive version is available at https://doi.org/10.1016/j.compositesb.2018.08.070
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Delafossite oxides; Power factor; Power generation; Thermoelectric
International Standard Serial Number (ISSN)
1359-8368
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 Elsevier, All rights reserved.
Publication Date
01 Jan 2019
Comments
National Science Foundation, Grant CMMI – 1560834