The study of modern energy conversion draws upon a broad range of knowledge and often requires a fair amount of experience. This suggests that laboratory instruction should be an integral component of a power electronics and electric machines curriculum. However, before a single watt can be processed in a realistic way, the student must understand not only the operation of conversion systems but also more advanced concepts such as control theory, speed and position sensing, switching signal generation, gate drive isolation, circuit layout, and other critical issues. Our approach is to use a blue-box module where these details are pre-built for convenience, but not hidden from the students inside a black box. Recent improvements to our blue-box modules are described in this paper and include a dual-MOSFET control box with independently isolated FET devices, a triple silicon controlled rectifier control box, a discretely built, high quality pulse-width modulation inverter, a small discrete brushless dc drive system, and a high-performance computer-controlled brushless dc dynamometer motor drive system. Complete details, sufficient to allow the reader to duplicate these designs, are publicly available.


Electrical and Computer Engineering


Grainger CEME
National Science Foundation (U.S.)
University of Illinois at Urbana-Champaign. Department of Electrical and Computer Engineering

Keywords and Phrases

Power Engineering Education; Education; Educational Technology; Energy Conversion; Curricula; Electric Machinery; Laboratories; Power Electronics; Students; Teaching; Educational Technology; Engineering Education; Electric Machines; Control Systems; Energy Conversion; Control Theory; Switching Circuits; Signal Processing; Signal Generators; FETs

International Standard Serial Number (ISSN)

0885-8950; 1558-0679

Document Type

Article - Journal

Document Version

Final Version

File Type





© 2005 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 May 2005