In Vivo Self-Powered Wireless Transmission using Biocompatible Flexible Energy Harvesters


Additional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self-powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self-powered system due to its high-level power consumption (microwatt-scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high-performance single-crystalline (1 − x)Pb(Mg1/3Nb2/3 )O3-(x)Pb(Zr,Ti)O3 (PMN-PZT). The PMN-PZT energy harvester generates an open-circuit voltage of 17.8 V and a short-circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications.


Electrical and Computer Engineering

Research Center/Lab(s)

Electromagnetic Compatibility (EMC) Laboratory

Keywords and Phrases

in vivo energy harvesting; piezoelectric single crystals; self-powered systems; wireless data transmission

International Standard Serial Number (ISSN)

1616-301X; 1616-3028

Document Type

Article - Journal

Document Version


File Type





© 2017 Wiley-VCH Verlag, All rights reserved.

Publication Date

01 Jul 2017