Multiantenna Secure Cognitive Radio Networks with Finite-Alphabet Inputs: A Global Optimization Approach for Precoder Design
Abstract
This paper considers the precoder design for multiantenna secure cognitive radio networks. We use finite-alphabet inputs as the signaling and exploit statistical channel state information (CSI) at the transmitter. We maximize the secrecy rate of the secondary user and control the transmit power and the power leakage to the primary receivers that share the same frequency spectrum. The secrecy rate maximization is important for practical systems, but challenging to solve, mainly due to two reasons. First, the secrecy rate with statistical CSI is computationally prohibitive to evaluate. Second, the optimization over the precoder is a nondeterministic polynomial-time hard (NP-hard) problem. We utilize an accurate approximation of the secrecy rate to reduce the computational effort and then propose a global optimization approach based on branch-and-bound method. The idea is to define a simplex and transform the secrecy rate into a concave function. The derived concave function converges to the secrecy rate when the defined simplex shrinks down. Using this feature, we solve a sequence of concave maximization problems over iteratively shrinking simplices and eventually attain the globally optimal solution that maximizes the approximation of the secrecy rate. When the complexity is concerned, a low-complexity variant with limited number of iterations can be used in practice. We demonstrate the performance gains when compared with others through numerical examples.
Recommended Citation
W. Zeng et al., "Multiantenna Secure Cognitive Radio Networks with Finite-Alphabet Inputs: A Global Optimization Approach for Precoder Design," IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 3044 - 3057, Institute of Electrical and Electronics Engineers (IEEE), Apr 2016.
The definitive version is available at https://doi.org/10.1109/TWC.2016.2515090
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Branch and bound method; Channel state information; Communication channels (information theory); Complex networks; Global optimization; Iterative methods; MIMO systems; Molecular physics; Network security; Optimization; Polynomial approximation; Radio; Radio systems; Secure communication; Cognitive radio network; Computational effort; Finite-alphabet inputs; Linear pre-coding; Maximization problem; Nondeterministic polynomial; Optimization approach; Statistical channel state informations; Cognitive radio; Linear precoding; Multi-antenna secure cognitive radio networks; Multiple-input multiple-output
International Standard Serial Number (ISSN)
1536-1276
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Apr 2016