We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.


Electrical and Computer Engineering

Research Center/Lab(s)

Intelligent Systems Center

Keywords and Phrases

Coaxial cables; Cost effectiveness; Fabry-Perot interferometers; High temperature applications; Microwave devices; Microwave resonators; Strain; Strain measurement; Displacement; Fabry-Perot resonators; High temperature; High-temperature environment; Nested structures; Reflection spectra; Sensing configuration; Sensing platforms; Displacement measurement; Hollow coaxial cable

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2018 MDPI AG, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Apr 2018