Algorithmic GPGPU Memory Optimization


The performance of General-Purpose computation on Graphics Processing Units (GPGPU) is heavily dependent on the memory access behavior. In this paper, we present an algorithmic methodology to semi-automatically find the best mapping of memory accesses present in serial loop nest to underlying data-parallel architectures based on a comprehensive static memory access pattern analysis. To that end we present a simple, yet powerful, mathematical model that captures all memory access pattern information present in serial data-parallel loop nests. We then show how this model is used in practice to select the most appropriate memory space for data and to search for an appropriate thread mapping and work group size from a large design space. Our experimental results are reported using the industry standard heterogeneous programming language, OpenCL, targeting the NVIDIA GT200 architecture. The full version of the paper can be found at [1].

Meeting Name

International SoC Design Conference: ISOCC (2013: Nov. 17-19, Busan, South Korea)


Electrical and Computer Engineering

Keywords and Phrases

Algorithms; Computer Graphics; Mapping; Mathematical Models; Parallel Architectures; Data Parallel; Data-Parallel Architectures; General-Purpose Computations; Graphics Processing Unit; Heterogeneous Programming; Industry Standards; Memory Access Patterns; Memory Optimization; Program Processors

International Standard Book Number (ISBN)

978-1479911424; 978-1479911400

Document Type

Article - Conference proceedings

Document Version


File Type





© 2013 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Nov 2013