Reconfigurable Disruption Tolerant Routing Via Reinforcement Learning


This paper shows packet delivery rate can be improved by adopting learning-based hybrid routing strategies when a wired network suffers from severe link disruption. The dynamics of the link disruptions complicate the routing problem; successful and stable routing operations of conventional routing approaches are hindered as the level of disruption increases. The target is to develop a robust and efficient routing approach in a single structure. A robust routing approach means a packet should be delivered to a destination even under severe disruptions. Efficient routing should deliver a packet with the shortest path at no disruption. These goals should be achieved with the maximum utilization of preexisting network components and with the minimal human intervention once installed. Therefore, we chose a popular conventional routing scheme, Link State, and add-ons that can learn changing network environment. Our approach is to add a learning agent and a simple routing scheme to Link State in order to automatically select a better routing scheme at an arbitrary level of disruption. Markov Decision Process is employed to model this problem. The simulation results show robustness and packet delivery rate are increased up to 35% at acceptable cost of computational and architectural complexity even when Link State approach is close to be collapsed.

Meeting Name

International Joint Conference on Neural Networks, IJCNN 2009 (2009: Jun. 14-19, Atlanta, GA)


Electrical and Computer Engineering


Missouri University of Science and Technology. Applied Computational Intelligence Laboratory

International Standard Book Number (ISBN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2009 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2009