Numerical Investigation of Glass-Weave Effects on High-Speed Interconnects in Printed Circuit Board


Numerical method is used to investigate the glass weave effects on via coupling and trace transmission properties. Studies indicate that a simple two-dimensional periodic structure is accurate enough for via coupling simulations while more complicated three-dimensional glass-weave structures have to be used for studies of trace transmission properties. Analytical formulas are provided to estimate the first resonant frequency of the glass weaves. The impact of trace-glass-weave orientations on resonances of traces has been investigated for both single-ended and differential striplines. It has been demonstrated that statistical Gaussian distribution of pitch sizes due to fabrication tolerance and the dielectric losses can reduce the glass-weave effects. The studies here are useful for better understanding of the high-frequency signal integrity performance of printed circuit boards.

Meeting Name

2014 IEEE International Symposium on Electromagnetic Compatibility (2014: Aug. 4-8, Raleigh, NC)


Electrical and Computer Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

Second Research Center/Lab

Electromagnetic Compatibility (EMC) Laboratory

Keywords and Phrases

Dielectric losses; Electromagnetic compatibility; Glass; Natural frequencies; Numerical methods; Printed circuits; Resonance; Scattering parameters; Strip telecommunication lines; Weaving; Analytical formulas; Coupling simulation; Fabrication tolerances; High frequency signals; High-speed interconnects; Numerical investigations; Transmission property; Two-dimensional periodic structures; Printed circuit boards; Glass-weave

International Standard Serial Number (ISSN)


Document Type

Article - Conference proceedings

Document Version


File Type





© 2014 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

08 Aug 2014