Optimal Spectrum Auction Design with 2-D Truthful Revelations under Uncertain Spectrum Availability


In this paper, we propose a novel sealed-bid auction framework to address the problem of dynamic spectrum allocation in cognitive radio (CR) networks. We design an optimal auction mechanism that maximizes the moderator's expected utility, when the spectrum is not available with certainty. We assume that the moderator employs collaborative spectrum sensing in order to make a reliable inference about spectrum availability. Due to the presence of a collision cost whenever the moderator makes an erroneous inference, and a sensing cost at each CR, we investigate feasibility conditions that guarantee a non-negative utility at the moderator. Since the moderator fuses CRs' sensing decisions to obtain a global inference regarding spectrum availability, we propose a novel strategy-proof fusion rule that encourages the CRs to simultaneously reveal truthful sensing decisions, along with truthful valuations to the moderator. We also present tight theoretical bounds on instantaneous network throughput achieved by our auction mechanism. Numerical examples are presented to provide insights into the performance of the proposed auction under different scenarios.


Computer Science

Keywords and Phrases

Auctions; Cognitive Radio Networks; Spectrum Allocation; Spectrum Availability Uncertainty; Spectrum Sensing

International Standard Serial Number (ISSN)

1063-6692; 1558-2566

Document Type

Article - Journal

Document Version


File Type





© 2017 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Feb 2017